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Abstract: Parameter estimation is crucial for us to analyse the models, and such works of individuals-based models
is still in the early stage of development. For the individuals-based models, there is no efficient methods to estimate
the parameters due to the observed data with noise produced by inherent randomness of model. This paper, we
utilize different methods that are well developed for parameter estimation of determined model which is constituted
by ordinary differential equations(ODE) are also adapted to stochastic models. In this article, We use the population
changes of aphids as a case study. We want to estimate the birth rate and the mortality of the aphids. An intuitive
approach is least square method to estimate the parameters, and this application is very extensive. However, the
problem of parameter identification is the most common issue of least square method in estimating parameters. In
this article we show the latest progress in parameter estimation for individuals-based models of our study which
bases on moment closure approximation technique. The combination of MCMC and likelihood function is a less
used method in the estimation of stochastic model parameters. These two methods can overcome the problem of
parameter identification in the least square.

Key–Words: Parameter estimation, Individuals-based Models, Moment closure, Least squares method, Likelihood
function, MCMC

1 Introduction
Research in recent years, mathematical models have
become more and more important in the study of
biochemical reaction systems. According to the d-
ifferent population level, these mathematical models
can be divided into two major categories: population-
level and individuals-based models. The first type of
model, which we call deterministic models, is usual-
ly composed of a set of differential equations(ODE).
Population-level models surreptitiously describe the
dynamic behavior of the population with an infinite
population size, which offers a general description of
the population dynamics behavior. The most signifi-
cant merit of these models is that we can analyze the
dynamical behavior of these models by using some
theories of ODEs. But they elide some results that
may arouse by assuming the population scale is finite

or by the inherently randomness of communication
between individuals. Thus Matis et al. put forward
a different model known as stochastic model and us-
ing it to describe the dynamics of the aphid popula-
tion based on the parameters [1]. Parameter estima-
tion is of great significance to the analysis of biolog-
ical system model. This paper considers the problem
of parameter estimation in the individual-based mod-
el. These models are dominated by a chemical master
equation (CME) that is often difficult to solve. Conse-
quently traditional methods of parameter estimation
which depend on iterative of parameter likelihoods
function are computationally intractable. To avoid this
problem, we can approximate the likelihood function
according to the Bayesian theorem which has many
successful applications for parameters estimation [3].
This paper proposes recent advance methods in pa-
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rameter estimation for individuals-based models and
the parameter likelihood can be approximated by the
moment closure.

The least squares technique (LSQ) is one of the
most widely used method of the parameter estima-
tion [2]. In this article, we use three methods to es-
timate parameters. Although the least squares method
is a powerful tool in parameter estimation, the prob-
lem of parameter non-identifiability greatly limits the
application of this method. Thus, we suggest a differ-
ent program for parameter inference based on an ex-
pression that is obtained by approximating the likeli-
hood function of the parameter through Bayesian the-
orem [4]. In order to get this expression, we need
to solve the moment equations that are exhibited by
ODEs which describe the time evolution of first mo-
ment (mean) and second moment (variance, covari-
ance) even more the higher order moments of the in-
teracting species. Then the solution of these equation-
s can be obtained by moment closure techniques, and
these results can be used to approximate calculation
the likelihood function according to Bayesian theo-
rem. Although the application of the Moment clo-
sure technique in population biology has a long his-
tory [5], and this method is rarely used in parameter
estimation [6]. On the other hand, we use the MCMC
method to estimate the parameter based on the like-
lihood of the parameters. Practice has been proved,
Bayesian theorem for the individual-based models of
the biochemical reaction systems is a very powerful
tool. The basic method of Bayesian inference tries
to integrate the prior information of model param-
eters with prior information, and then the posterior
distribution of the parameter can be obtained accord-
ing to the Bayesian theorem. Thus we can infer the
model parameters with the posterior distribution [7].
The MCMC method can be described as a revolution
in Bayesian statistics, which is a simple and effec-
tive Bayesian method of the calculation. The MCMC
method is mainly composed of Metropolis-Hastings
and Gibbs sampling algorithm [8]. The basic idea of
this method is that through repeated sampling and es-
tablish a stationary distribution for the request of the
posterior distribution of Markov chain, and the sam-
ple is obtained for the the posterior distribution, and
then based on these samples to do all kinds of statisti-
cal inference, such as the estimated parameters of the
mean, variance, and the correlation, etc

The paper is structured as follows. In the next
section, we will introduce the individual-based mod-
el. Section 3 illustrates the methods of the parameter
estimation and their results. A brief discussion is giv-
en in the finial section.

2 Model
2.1 Description of the model
For this paper we modeling including two stochastic
processes Z = {N,C}. As discussed in [9], denote
N(t) the number of the pest at current time. Assuming
that λN(t) represents pest population birth rate [10].
In particular, denote C(t) the environment deteriorat-
ed, up to time t, by the infestation. Let µN(t)C(t) be
mortality of the pest. and for simplicity, we ignore the
condition of immigration and emigration. Modelling
these two biochemical reactions as follow,

N
λ−→ 2N + C

N + C
η−→ C

(1)

For (1), the first reaction means both N and C in-
creasing one unit while the second reaction shows that
N decreasing a unit whereas C is unchanged. These
models are called a stochastic dynamical model in the
literature [11]. Take parameter values α = 2.453,
η = 0.0094 and the initial values of the N and C are
N(0) = 1, C(0) = 1. Simulations for the dynamic of
the pest by Gillespie algorithm [12] are illustrated in
Fig. 1(a)
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Figure 1: (a) Time evolution of the pest population
simulated by Gillespie algorithm [13]. (b) shows the
Curve fitting by the least squares estimation.

By using the probabilistic laws, we can express
the model considered in (t, t+ dt], as follow

Prob{N(t+ dt) = n(t) + 1, C(t+ dt) = c(t) + 1|

n(t), c(t)} = λn(t)dt+ o(dt), .
(2)
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Prob{N(t+ dt) = n(t)− 1, C(t+ dt) = c(t)|

n(t), c(t)} = λn(t)dt+ o(dt).
(3)

Where dt is enough small. Let pn,c(t) be the probabil-
ity that there are n pests in the population at time t and
a cumulative quality of c. In particular, the number of
C is greater thanN . Then, the pn,c(t) can be obtained
by solving the forward Komogorov equations. This
is achieved by writing pn,c(t +∆t) as the sum of the
probabilities of arriving in state (n, c) for small inter-
val (t, t+ dt]:

pn,c(t+∆t) = λ(n− 1)pn−1,c−1(t)∆t+ η(n+ 1)

cpn+1,c(t)− n(λ+ ηc)pn,c(t).
(4)

Clearly, for (4) the probability of a birth event is the
first term, and the second gives a probability of the
death event. Removing from the state (n, c) at time t,
and such events are occur in (t, t + dt]. Hence, from
the (4) we obtain the forward Kolmogorov equation
which is called the chemical master equation(CME):

dpn,c(t)
dt = λ(n− 1)pn−1,c−1(t) + η(n+ 1)cpn+1,c

(t)− n(λ+ ηc)pn,c(t).
(5)

The analytic solution of (5) is impossible to obtain.
These two stochastic processes can be formulated as
the moment equations of the system. Defining the bi-
variate moment generating function as

M(θ1, θ2, t) =

∞∑
n,c=0

enθ1+cθ2pn,c(t) (6)

there is a relationship between the moment and cumu-
lant generating function

K(θ1, θ2, t) = log[M(θ1, θ2, t)] =

∞∑
n,c=0

κn,cθ1θ2/i!j!

(7)
On multiplying equation (5) by enθ1ecθ2 , then we ob-
tain

enθ1ecθ2
dpn,c(t)

dt
=λ(n− 1)enθ1eθ2e(n−1)

e(c−1)θ2pn−1,c−1(t) + (ηc(n+ 1)

e−θ1e(n+1)θ1ecθ2pn+1,c(t)−
n(λ+ ηc)enθ1ecθ2pn,c(t).

(8)

We sum both sides of the (8) for n, c and then obtain

∂M

∂t
= λ(eθ1+θ2−1)

∂M

∂t
+µ(e−θ1−1)

∂2M

∂θ1∂θ2
(9)

From the (7) we can get the cumulant generating func-
tion as

∂K
∂t = λ(eθ1+θ2 − 1)∂K∂t + µ(e−θ1 − 1)( ∂2K

∂θ1∂θ2
+

∂K
∂θ1

∂K
∂θ2

)
(10)

The ODEs for the cumulants κ10, κ01, κ02, κ20 and
κ11 can be obtained from (10). It seems worth not-
ing here that κ10, κ01 are the means of the N(t) and
C(t) respectively, and κ20, κ02 are the corresponding
variance, and κ11 is covariance.

We now equate coefficients of θ1, θ2, θ21, θ1θ2 and
θ22 on both sides of (10) to give the differential equa-
tions

˙κ10 = λκ10 − η(κ10κ01 + κ11)
˙κ01 = λκ10

˙κ20 = λ(κ10 + 2κ20) + η(κ11 − 2κ10κ11 − 2κ21
+κ01(κ10 − 2κ20))

˙κ02 = λ(κ10 + 2κ11)

˙κ11 = λ(κ10 + κ20 + κ11)− µ(κ10κ02 + κ01κ11

+κ12)

(11)
For simplicity, we set ψ = (λ, η). In order to more
accurately describe the dynamics of pest populations,
we need to estimate these two parameters.

3 Method
3.1 The least squares methods
The individuals-based model describes a continuous
time Markov process. Parameter estimation of the
individuals-based model can help us make the best
prediction. As described in the second section, we use
different methods to estimate parameters of the model
(11).

For the parameter estimation, the LSQ is the most
commonly used method. From the definition of abso-
lute least-squares, we want to find the optimal param-
eters to minimize the objective function that is the sum
of squares of the differences between the observed da-
ta yi and predicted values y∗i of the model. Therefore
the absolute least-squares can be defined as

J =
n∑

i=1

[yi − y∗i ]
2 (12)
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In our model, we can obtain the N(t) by the Gillespie
algorithm which treated as the measured variables and
the model-predicted data can be obtained by the (11).
We use the absolute least-squares to estimate the pa-
rameters λ and η as follow:
Algorithm 1.
(i) Given the initial values that areN(0) = 1, C(0) =
1, λ = 2.453 and η = 0.0094
(ii) To simulate the evolution of N(t) by solving the
system (11), then we obtain the measured variables,
denoted yi. The first moment of N(t) can be obtained
by solving equation (11), which we treat it as predict-
ed values y∗i of the model.
(iii) Minimizing the (12) then we get the estimate val-
ues of λ and η.

We get the estimate values of the λ and η are λ =
1.4648, η = 0.0072 . Although the least squares are a
powerful tool for parameter estimation, The problem
of parameter identifiability is the biggest bottleneck of
least squares estimation (see Fig. 1(b)).

3.2 The maximum likelihood and MCMC
methods

In order to circumvent this obstacle, we utilize maxi-
mum likelihood method to estimate the parameter of
the system (11). As the previous introduced, for the
model (1), taking the initial values Z(0) = z(0) of
species and the initial values λ = 2.453, η = 0.0094
of the parameters. The count of the Z at different time
point can be obtained. Substituting these results into
equation (5). We get the probability of the Z at differ-
ent observation points of the time by solving the (5).
We can calculate the likelihood function of the param-
eters as defined later by these probabilities. Specifi-
cally, giving the likelihood is

p(ψ|Z) =
T∏
t=1

N∏
n=1

C∏
c=n

p(n, c, t|ψ) (13)

Where p(·, t|ψ) is the probability of Z at time t given
that ψ is parameter of the model. N and C are the
maximum values of N and C. Maximizing the like-
lihood function can obtain the estimated value of the
model parameters.

MCMC method is a another tool for parameter
estimate of stochastic model [14]. Using the MCM-
C method to estimate parameter, we need to deter-
mined the prior distribution p(ψ) of the parameters
by the prior information. The MCMC method takes
parameter as random variable. So the sample distribu-
tion family should be understood as conditional dis-
tribution, namely, whether it is a continuous or dis-
crete random variable, it can be expressed as a condi-
tional distribution that depends on the parameter. In

this paper, it can be formulated as p(Z|ψ). From the
Bayesian point, the sample is produced in two steps.
The first step is that we construct a prior distribution
to generate a parameter. And the second step is that a
sample is produced from the distribution of p(Z|ψ′

)
depend on the parameters obtained from the first step.
For this step, it can be understood as to solve the mod-
el for the given parameter ψ

′
and the solution of the

model for the given time is the sample. The probabil-
ity of sample occurrence is

p(Z|ψ′
) =

∏
i=1

p(zi|ψ
′
) (14)

According to the marginal distribution of the sample
Z, from the Bayesian inference we have

p(ψ|Z) = p(Z|ψ)p(ψ)
p(Z)

(15)

Where

P (Z) =

∫
ψ
p(Z|ψ)p(ψ)dψ (16)

After given the prior distribution and the sample dis-
tribution, the posterior distribution of the parameter
can be calculated according to the (15). Since all pos-
sible parameter values are independent of the marginal
density function of the sample. So the equation (15)
be transformed into

p(ψ|Z) ∝ p(Z|ψ)p(ψ) (17)

When the distribution of the sample is a likelihood
function the equation can be reformulated as

p(ψ|Z) ∝ L(Z|ψ)p(ψ) (18)

Equation (18) is equivalent to formula (13). So the
MCMC method for the parameter estimate as follows:
Algorithm 2.
(i) Given the initial values vector ψ(0) = (λ(0), η(0)).
(ii) Given the initial time t = 0.
(iii) The cycle: From the Proposal distribution
q(ψ

′ |ψ(t)) draw the ψ
′
; From the Uniform distribu-

tion U(0, 1) draw the u; If u ≤ α(ψ
′
, ψ(t)), then

ψ
(t+1)
i = ψ

′
i accept this value. Else ψ(t+1)

i = ψ
(t)
i

reject this value.
(iv) t = t + 1;. After a burn-in storage ψ(t+1) for the
per cycle;
(v) When t is sufficiently large, the loop ends;

This method is known in the literature as Random
Walk Metropolis-Hastings algorithm. In terms of ease
of implementation, the Metropolis-Hastings methods
are the most favourable.
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3.3 Determining acceptance probability

In the process of distribution selection, the basic idea
is that the acceptance probability can be maintained
at a certain level. For simplicity, we use symmetric
propose distribution q(ψ

′ | ψ) = q(ψ | ψ′
) [15]. So

the acceptance probability can be determined by

α(ψ
′
, ψ) = min

{
1,
p(ψ

′ |Z)
p(ψ|Z)

}
(19)

From the calculation form of the (19), we conclude
that the p(ψ|Z) only appears in the form of quotient
in the whole algorithm. Therefore, the complete form
of p(ψ|Z) in the entire calculation is not necessary. In
particular, constant terms can be omitted. So in the
calculation, we remove any non-parameter-dependent
constant factors in the likelihood function, which sim-
plify the calculation.

3.4 Determining burn-in

The ‘burn-in’ problem is the question of how much of
a run should be thrown away on grounds that the chain
may not yet have reached equilibrium. The length of
burn-in m depends on ψ0, on the rate of convergence
of q(ψ

′ |ψ(t)) to the stationary distribution and on how
similar between the proposal and stationary distribu-
tions are required to be. Theoretically, having spec-
ified a criterion of ’similar enough’, m can be deter-
mined analytically. However, this calculation is far
from computationally feasible in most situations. S-
tarting the chain close to the mode of stationary distri-
bution doesnot remove the need for a burn-in, as the
chain should still be run long enough for it to ’forget’
its starting position.

Calculating the the length of burn-in is unneces-
sary, as it is likely to be less than 1% of the total length
of a run sufficiently long to obtain adequate precision
in the estimator. It does not seem necessary to throw
away many more iterations than the time it takes for
the autocovariances to decay to a negligible level [16].

3.5 Performance the maximum likelihood
and MCMC methods

We chose the same initial value as the least squares
method that is λ = 2.453, η = 0.0094. The observed
data can be obtained by the Gillespie algorithm. As
followed the describe in the section 3.1, The parame-
ters are estimated by these methods and the results are
listed in Table 1.

Table 1: Estimated the model (1) parameters by
lSQ, MLE, MLE-MCMC methods

initial values LSQ MLE MLE-
MCMC

λ 2.453 1.4648 0.2514 0.2956

η 0.0094 0.0072 0.0075 0.0096
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Figure 2: The panels delineate the distribution of the
λ and η by MH algorithm.

In order to implement this algorithm, we set the
burn-in period m = 5000 and sample size M =
10000. To illustrate the effectiveness of the MH al-
gorithm, we estimate the parameters by using simu-
lated data. The advantage of this is that we know the
true value of the parameters and we can determine the
validity of the algorithm by comparing the difference
between the estimated value and the real value. In
practice, we only know actual observation or experi-
mental data, not the model. To realize the prediction
function of the model, it is necessary to use the actu-
al data to determine the parameters of the alternative
model, that is, to determine the model. It turns out that
the MH algorithm is also effective for model selection
[17].
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4 Discussion
The parameter estimation is the premise of the mod-
el analysis. The paper suggests three methods for
parameter estimation in stochastic individual-based
model for biochemical reaction systems, based on the
moment equations. These methods are available for
the parameters estimation, even though the process of
individuals-based models is different from the deter-
ministic model [18]. For the least square method, we
need the observed data for the objective function (12).
In this article, the data is synthesized by the Gillespie
algorithm. The least-squares method relies heavily on
system parameters.

In order to overcome the problem of parameter i-
dentifiability, we introduce maximum likelihood and
the MLE-MCMC estimation. But we must acknowl-
edge that it is very difficult to get the solution of a high
dimensional CME when the system contains exceed
three species. The solution of likelihood function is
still the biggest bottleneck in the application of these
two methods.

In this paper, the solution of likelihood function
can be obtained. The accuracy of maximum likeli-
hood estimation is higher than the least squares esti-
mation [19]. From a mathematical aspect, how to im-
prove the efficiency for the MLE-MCMC method is
very interesting, and it would be left as a future work.

To conclude the paper, suggests different method-
s for parameter estimation of stochastic models. The
last two methods need to calculate CME integration
for a small time interval. It shows that these ap-
proaches are very practical for parameter estimation.
As described in the introduction, it demonstrate these
methods are also useful for parameter estimation of
stochastic individual models of in biochemical reac-
tion system. As a mathematical aspect, how to im-
prove the efficiency of he algorithm as well as imple-
ment optimal control for the pest management is very
promising. In the future work, we will consider this
two problems.
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